

Control Strategies for an Integrated SOFC/GT System

NETL LEAP Workshop

November 3rd, 2021

Dr. Michael Sprengel

Solid Oxide Fuel Cell / Gas Turbine Hybrid System

Supported through ARPA-E INTEGRATE project number DE-AR0000956

Project Targets:

- SOFC/Turbine Hybridization
- Pressurized operation
- Natural gas fuel
- 70%+ LHV efficiency
- Installed Cost: \$1800 per kW

Basis of Operation

Key States and Controls

Dynamic System Model

All custom code built up from governing equations, built in MATLAB Simulink

- Real+ideal gas properties (REFPROP)
- Individual species tracking: N₂, O₂, H₂O, CO, CO₂, H₂, CH₄, C₂H₆, C₃H₈
- Equilibrium chemistry (MSR/WGS) and mixture modeling
- Predominantly physicsbased
- SOFC and GT subsystems validated at steady-state
- *Faster than real-time

Key Findings from Dynamic System Analysis

- ➤ Higher SOFC temperatures improve system efficiency*
- Higher turbine inlet temperatures improve system efficiency*
- ➤ Flow from the GT helps reject heat generated in the SOFC

*Maximum temperature limited by material constraints

Principal Control Loops

- Adjust fueling rate to control power output
- Adjust SOFC load to control maximum stack temperature
- Adjust GT speed to control turbine inlet temperature

Energy Storage Concepts

Globally Optimal Control via Dynamic Programming

- Guarantees global optimality
 (to the level of state/control discretization)
- Determine a system's maximum possible performance
- Discover effective, but perhaps counterintuitive, control schemes
- Provide a baseline for comparing implementable control strategies
- ➤ Non-implementable (*a-priori* knowledge)

Globally Optimal Control Trajectories generated by Dynamic Programming

Thanks for Your Attention

Supported through ARPA-E INTEGRATE project number DE-AR0000956